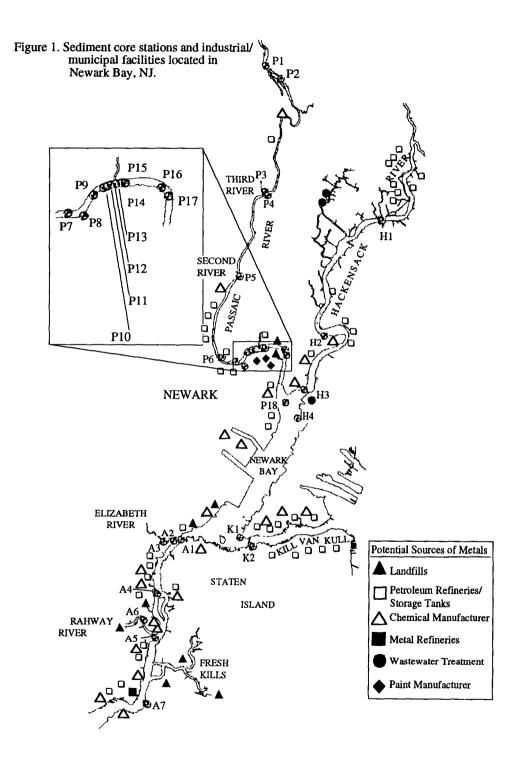


Distribution of Inorganic Compounds in Sediments from Three Waterways in Northern New Jersey

N. L. Bonnevie, 1 R. J. Wenning, 1 S. L. Huntley, 1 and H. Bedbury²


¹ChemRisk—A Division of McLaren/Hart, 1685 Congress Street, Portland, Maine 04102, USA and ²Maxus Energy Corporation, 717 North Harwood Drive, Dallas, Texas 75201, USA

Recently, a screening-level study of surficial sediments within Newark Bay, New Jersey was conducted to determine the spatial distribution of trace metals throughout the watershed (Bonnevie et al. 1992). The results of the analysis indicated that concentrations of trace metals exist within the estuary at levels potentially posing serious ecological hazards to fish and benthic invertebrates. Based on the results of that study, a more extensive sediment sampling effort was conducted to more specifically identify areas with high metal contamination relative to potential sources. The focus of this study was to further quantify the spatial distribution of metals within the watershed and to more closely examine the ecological hazard at specific locations. In addition, vertical distributions were examined in sediment cores and the activities of the radionuclides ²¹⁰Pb and ¹³⁷Cs were measured within the cores to provide approximate dates of deposition. From this information, it may be possible to identify possible current and historical sources of contamination and areas in which further toxicological testing should be conducted.

MATERIALS AND METHODS

Thirty-one 10- and 20-ft sediment cores were collected during November and December of 1991 at locations throughout the Arthur Kill, Hackensack River, Kill van Kull, and the Passaic River (Fig. 1). Sampling stations were located outside of shipping channels in stable depositional reaches to minimize the impacts associated with dredging activities and ship traffic in an effort to obtain undisturbed sedimentation profiles. At all stations, except A3, P1, P2, and P3, cores were collected using a Model 1400 Vibracore unit with either a 10 ft or 20 ft stainless steel core barrel with a Lexan liner. At stations A3, P1, P2, and P3, a smaller vibracore unit equipped with a 10 ft, unlined, aluminum core barrel was utilized. Prior to core collection, all field sampling and sample processing equipment, aluminum core barrels, and Lexan liners were rinsed with acetone and hexane (50:50), analyte-free trichloroethylene, and analyte-free deionized water. Core barrels and liners were sealed with aluminum foil until the commencement of field sampling. Field and rinsate blanks were utilized to verify the levels, if any, of residual contamination. Sediment samples were collected from the intact Lexan liner or aluminum core tube at predetermined depths for chemical (2 in thickness) and radionuclide (1 in thickness) analysis. The outermost layer of sediment was discarded to minimize vertical mixing. Samples were transferred to pre-cleaned

Send reprint requests to R.J. Wenning at the above address.

glass containers, sealed, and maintained at 4°C prior to analysis in accordance with USEPA Contract Laboratory Program requirements.

Sediments were analyzed for Target Analyte List (TAL) metals by S-Cubed Laboratory (San Diego, CA) according to the USEPA Contract Laboratory Program (CLP) Statement of Work for Inorganic Analysis, Multi-Media, Multi-Concentration (ILM02.0) methods. Sediments were digested using a total dissolution. A portion of non-homogenized sample was analyzed for mercury by cold vapor atomic absorption spectroscopy. The remaining sample was homogenized and analyzed for the other TAL metals and cyanide. Graphite furnace atomic absorption spectroscopy (GFAA) was used to determine the concentrations of arsenic, thallium, and selenium. The concentrations of cyanide were determined spectrophotometrically. Inductively coupled plasma emission spectroscopy (ICP) was used for all other TAL analyses except for lead. Lead was analyzed by ICP for most samples; however, for those samples with low lead analyte levels GFAA methods were used. Recoveries were determined from matrix spikes. Analytical methods were calibrated using standard reference materials. Radiochemistry samples were analyzed for ²¹⁰Pb and ¹³⁷Cs radioisotopes by Teledyne Isotopes (Westwood, NJ). The radioisotope ²¹⁰Pb was measured by radiochemical separation and beta assay for ²¹⁰Bi product, while gamma spectral analysis was used to determine 137Cs activity.

RESULTS AND DISCUSSION

Metal accumulation in sediments has been linked to specific sources such as discharges from smelters (Cu, Pb, and Ni), metal-based industries (e.g., Zn and Cd from electroplating), paint and dye formulators (Cd, Cu, Pb, Hg, and Zn), petroleum refineries (Pb), as well as effluents from chemical manufacturing (Forstner 1990). Metals in aquatic environments also occur as the result of a variety of nonpoint sources such as emissions from automobiles, dustfall, precipitation, combined sewer outfalls (CSOs), municipal wastewater treatment plant effluents, and stormwater runoff (Mytelka et al. 1973; Whipple et al. 1976; Meyerson et al. 1981; NOAA 1982; Granier et al. 1990; USEPA 1992). Many of these potential sources have been identified within the Newark Bay region (Fig. 1).

Of the twenty-three metals analyzed, seven (As, Cd, Cu, Pb, Hg, Ni, Zn) were selected for closer examination in this analysis. The concentrations of these seven metals are summarized in Table 1. Lead and Zn were the most frequently detected throughout the study area, generally found in more than 70 percent of all samples (Table 1). Copper, Pb, and Zn results in several samples were rejected due to interferences, therefore the actual detection frequencies of these metals are likely to be higher than reported here. The concentrations of all metals tended to be highest in the Passaic River and in the Arthur Kill, similar to the previously reported results (Bonnevie et al. 1992).

Metal concentrations measured at stations in the lower Passaic River and the Arthur Kill are presented in Tables 2 and 3, respectively. The highest concentrations of Pb, Cu, and Ni were found at Station A5, located adjacent to two large chemical manufacturers (Fig. 1), while Zn concentrations were highest (10,200 mg/kg) at the northwest corner of Prall's Island (A4) in the Arthur Kill. Elevated metal

Table 1. Summary of inorganics measured in Northern New Jersey sediments^a

Arthur Kill (n=21)				Hackensack River (n=12)			
Chemical	Frequency (%)	Range (mg/kg)	Median (mg/kg)	Frequency (%)	Range (mg/kg)	Median (mg/kg)	
Arsenic	76	3.7 - 294	43.7	83	8.4 - 11.9	24.1	
Cadmium	71	1.9 - 23.2	11.2	58	1.5 - 6.5	2.5	
Copper	100	3 - 3850	419	58	7 - 328	170	
Lead	100	7.3 - 3000	423	100	9.4 - 541	149.5	
Mercury	62	0.96 - 22.1	7.4	67	0.38 - 9.3	7.6	
Nickel	62	20.4 - 269	64.4	92	16.6 - 76.6	40.5	
Zinc	100	10.2 - 10200	768	100	28.1 - 506	328	

	Passaic River (n=84)				Kill van Kull (n=6)			
Chemical	Frequency (%)	Range (mg/kg)	Median (mg/kg)	Frequency (%)	Range (mg/kg)	Median (mg/kg)		
Arsenic	92	0.72 - 233	10.2	50	15.4 - 32.6	23.8		
Cadmium	65	0.38 - 45.4	6.3	67	0.72 - 10.3	3.35		
Copper	80	4.4 - 1390	151	100	8.4 - 378	121.15		
Lead	77	4.4 - 2200	391	100	16.4 - 395	168.55		
Mercury	69	0.46 - 29.6	7.5	67	2.2 - 13	6.05		
Nickel	100	6.4 - 185	34.2	100	13 - 87.4	44.2		
Zinc	80	15 - 1960	393.5	100	37.2 - 713	250.5		

_	Total (n=134)			
-	Frequency	Range	Median	
Chemical	(%)	(mg/kg)	(mg/kg)	
Arsenic	78	0.72 - 294	14.5	
Cadmium	65	0.38 - 45.4	6.45	
Copper	82	3 - 3850	186	
Lead	84	4.4 - 3000	350.5	
Mercury	68	0.38 - 29.6	7.5	
Nickel	93	6.4 - 269	40.9	
Zinc	90	10.2 - 10200	394	

Summary statistics are based on detectable concentrations only.
 Concentrations measured at all depths are included in each calculation.

concentrations in sediments in the upper Arthur Kill (A1-A4) are likely associated with the presence of several large petroleum refining facilities located in the Bayway, NJ industrial complex (Fig. 1), while sediments along the lower portion (A5-A7) are likely impacted by the presence of numerous landfills, scrap-metal vards. and smelters (Fig. 1). The Fresh Kills landfill, for example, located on Staten Island near station A7, was established in 1948 and is one of the largest landfills in the world (Suflita et al. 1992).

In the lower Passaic River, metal concentrations were highest in the lower reaches at stations P10 through P18 (Table 2). Elevated metal levels are likely due

to several well-established tanneries, scrap-metal yards, and paint manufacturers (Fig. 1). The Roanoke Street sewer outfall located downstream of P17 has been identified as the area's most contaminated sewer discharge (PVSC 1970). This area has also historically been impacted by discharges from the Brown Street sewer (PVSC 1970). Stations P10 to P17 are located on the Passaic River in an area with the highest sedimentation rates south of the Dundee Dam (IT 1986). Station P2, located on the upper Passaic River just below the dam, contained elevated levels of Cu and Pb. Sedimentation rates estimated for the area above the dam are low, implying that the dam is not a barrier to downstream sediment transport. Elevated metal concentrations are likely due to contributions from upstream industrial and municipal sources.

To evaluate the toxic potency of metal-contaminated sediments, hazard indices for each waterway were derived from comparisons of average metal concentrations in surficial samples (0-2 in) to bench-mark sediment toxicity values derived by the

Table 2. Metals concentrations (mg/kg dry wt.) in lower Passaic River sediments

]	Depth (in)	Arsenic	Cadmium	Copper	Lead	Mercury	Nickel	Zinc
P10	0 18 38 92 146 188	R ^a R R R R R	7 10 19.5 35 7.2 (0.33) ^b	265 338 489 666 875 13.9	425 534 823 777 907 13.4	4.6 10.1 14.6 18.7 13.6 (0.16)	52.8 75.9 83.3 104 140 21.6	740 944 1350 1520 1760 55.6
	224	R	(0.33)	19.2	8.9	(0.17)	22.5	60
P11	0 18 38 92 146 188 200	13.2 15.8 18.8 47.4 67.3 21.5	7.2 13.4 18.7 45.4 33.7 0.84 (0.35)	R R R R R	350 755 800 868 814 99.6 19.3	5.1 9 10.3 25.1 29.6 2.2 0.49	49.6 98 84 103 104 22.9 24.2	R R R R R R
P12	0 18 38 62 92 146 166 178	15 15.7 8 33.6 23.5 9.4 1.6 1.6	13.7 12.2 19 7.6 3.5 0.6 (0.34) (0.34)	R R 613 408 103 14.6 17.5	840 747 675 813 518 151 9.6 12.2	6.5 12.7 12.4 10.6 9.6 2.7 (0.17) (0.17)	118 93.1 90.7 76.6 50.3 17.4 8.7 16.1	R R 1430 843 193 31.9 39.6
P13	0 18 38 92 146 188 212	10 14.5 30 49.6 215 (1) (1.1)	6.1 8.2 15.9 3 8.7 (0.35) (0.35)	243 280 506 349 1390 9.6 9.5	400 552 707 365 1650 7.8 R	5.3 6.8 12.5 8.1 10.8 (0.18) (0.18)	49.7 64.8 77.2 62.7 132 12.8 8.8	608 695 1080 658 1900 28.3 22.9
P14	0 18 38 92 146 188 230	12.3 74.6 11.1 (1) 14.8 17.2 2.1	(0.54) 2.7 0.38 (0.35) 12.5 4.6 (0.35)	26.4 448 55.5 6.4 345 510 11.2	31.3 1040 61.6 R 837 728 17.3	(0.17) 12.5 1.4 (0.17) (0.31) 13.8 0.46	16.8 53.6 11.4 6.4 80.6 57.7 10.6	76.6 853 130 15 1090 1250 55.9
P15	0 18 38 92 146 188 216	12.2 7.9 18.8 52.3 35.5 2 (1.1)	7.7 6.2 13.8 31.2 5.5 (0.38) (0.36)	255 192 421 690 845 15.4 7.3	391 482 810 755 1160 12.9 R	5.9 9.4 16.9 16.8 18.3 (0.18) (0.18)	52.9 44.8 76.1 98.8 184 9.5 10.5	729 515 1140 1530 1450 29 20.7
P16	0 18 38 92 146 194 216	11.5 16.1 20.9 233 22.2 0.81 0.72	4.7 11.9 19.5 6.4 0.5 (0.37) (0.37)	184 364 444 1040 61.7 5.9 15.6	R R R R R R	5 7.4 10.9 27.1 0.59 0.78 (0.18)	42.4 65.9 93.1 185 15.4 7.4 18.4	494 847 1670 1960 100 16.6 41

a. "R" indicates that sample was rejected due to analytical interferences.

b. Numbers in parentheses indicate detection limit.

Table 3. Metals concentrations (mg/kg dry wt.) in Arthur Kill sediments

	Depth							
	(in)	Arsenic	Cadmium	Copper	Lead	Mercury	Nickel	Zinc
A 1	0	18.8	6.8	264	532	3.9	45.7	906
	8	$(3.5)^{a}$	(0.35)	9.8	18.1	(0.18)	28.6	60.1
	18	4.8	(0.35)	8.6	14.9	(0.17)	25.3	54.9
A2	0	R^b	(0.72)	89.7	138	3.9	45.9	204
1	8	Ŕ	19.8	497	864	5	136	995
	18	R	21.9	660	684	14.1	113	911
А3	0	3.7	1.9	61,2	117	0.96	20.4	151
713	18	(1)	(0.35)	3	7.3	(0.18)	(3.7)	10.2
	38	13.7	(0.58)	15.4	28.2	(0.29)	33.2	90
A4	0	18.4	7.3	321	408	2	130	1890
	18	101	23.2	419	750	5.9	50.4	10200
	38	11.5	(0.62)	17.7	23.4	(0.31)	30.2	116
A5	0	52.7	9.6	500	351	R	74	904
110	18	294	19.4	3850	3000	R	269	2650
	38	118	11.2	2660	1170	R	185	1910
A 6	0	29.8	5.4	347	472	8.2	50	554
AU	18	35.5	9.8	510	423	14.4	59.9	610
	38	51.9	13.7	631	654	22.1	69.7	768
Α7	0	60.9	5.7	586	356	7.4	68.9	607
A	18	70.9	18.4	1350	532	17.8	115	945
	38	190	15.5	1320	545	12.3	74.4	909

a. Numbers in parentheses indicate detection limit.

Table 4. Summary of benchmark sediment quality criteria used for evaluating potential sediment toxicity

	Toxic Effe	Toxic Effects Values				
	ER-La	ER-M ^b				
	(mg/kg)	(mg/kg)				
Metal	dry wt.	dry wt.				
Arsenic	33	85				
Cadmium	5	9				
Copper	70	390				
Lead	35	110				
Mercury	0.15	1.3				
Nickel	30	50				
Zinc	120	270				

Source: NOAA 1991

National Oceanic and Atmospheric Administration (NOAA 1991) (Table 4). Similar to earlier findings (Bonnevie et al. 1992), all metals of concern exceeded their respective NOAA guideline values. Eight stations in the Arthur Kill (A4, A5, A7), Passaic River (P6, P10, P12. P15), and Hackensack River (H1) warrant further investigation based on exceedances of NOAA toxicity values. Mercury, Pb, and Zn pose the greatest potential aquatic hazards based on the magnitude of the calculated hazard indices and the number of stations that exceeded NOAA toxicity values.

The vertical distributions of the metals were examined to investigate historical changes in anthropogenic contributions to bottom sediments. In general, metal concentrations found at depth were higher than at the surface (Tables 2 and 3). Concentrations in samples collected from the top twenty inches of sediment did not differ significantly from the mean; elevated metal concentrations were typically measured in samples collected from depths greater than 24 in. Despite the occurrence of metals in surficial sediments at potentially toxic concentrations, results suggest that more recent inputs have declined relative to historical discharges. This may be difficult to discern, however,

b. "R" indicates that sample was rejected due to analytical interferences.

a. Effects Range - Low. Represents the 10th percentile of concentrations at which adverse affects were observed in bioassays reviewed.
 b. Effects Range - Median. Represents the 50th

b. Effects Kange - Median. Represents the Soun percentile of concentrations at which adverse affects were observed in bioassays reviewed.

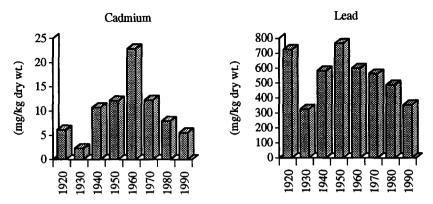


Figure 2. Cadmium and lead concentrations according to decade of deposition

since the high sedimentation rates in the lower Passaic River and elsewhere suggest that elevated metal concentrations are indicative of contributions from upstream, as well as local, sources.

Radiochemistry results support sedimentation rates ranging from 0.23 (A6) to 3.5 (P10) in/year in the three waterways. Sediment cores from the lower Passaic River were found to have the highest depositional rates in the watershed (2.8 - 3.5 in/year), confirming those reported in a previous investigation (IT 1986). This area has not been dredged by the U.S. Army Corps of Engineers since before 1950 (IT 1986); based on these high sedimentation rates, nearly 8 ft of sediment has accumulated since that period.

Using the sedimentation rates calculated from radioisotope measurements, pollution profiles of sediment cores indicate elevated concentrations of several metals prior to 1950 and decreased levels since the 1960s. The results for Pb and Cd are presented in Fig. 2 to illustrate the observed trends. In general, metal concentrations increased after the 1920s, peaking in the 1950s and the 1960s. Concentrations in sediments have gradually declined since the 1970s (Fig. 2). concentrations appear to have peaked during the 1960s, while the highest concentrations of Cu, Pb, Hg, Ni, and Zn appear to have occurred during the 1950s. These profiles closely match the industrial history of the region. Although the Newark region has been heavily populated for over a hundred years, its most intense industrial expansion occurred during the rapid economic expansion associated with World War II (Cunningham 1966a.b). Industries related to the war effort, including paint and pigment formulators, metal plating, and ship building, are likely to have contributed significant amounts of trace metals to the estuary during this period. In addition, the historical presence of scrap metal yards, tanneries, and paint and pigment manufacturers have undoubtedly impacted the environmental quality of the area (Meyers 1945; Cunningham 1966b). The gradual decline after the 1960s may reflect increased regulations of waste discharges, as well as improvements in the structure and functioning of combined sewer outfalls (CSOs) and other waste treatment facilities (ISC 1988).

The results of this investigation demonstrate that the presence of toxic metals in

surficial and buried sediments must be considered a significant factor in the overall environmental quality of Newark Bay and its major tributaries. Although inputs appear to have declined relative to historical sources, metal concentrations in bottom sediments from the Passaic River and the Arthur Kill indicate on-going contributions. Data from sediment cores collected from the lower Passaic River indicate that this reach is heavily contaminated, in part due to a relatively high depositional environment and the accumulation of metal-laden sediments from local and upstream industrial and municipal sources. Additional research will be necessary to identify these potential sources and to evaluate their contribution to trace metal pollution in these waterways.

REFERENCES

- Bonnevie NL, Gunster DG, Wenning RJ (1992) Lead contamination in surficial sediments from Newark Bay, New Jersey. Environ Inter 18:497-508
- Cunningham JT (1966a) Newark The New Jersey Historical Society. NJ pp 1-320
- Cunningham JT (1966b) New Jersey, America's Main Road Doubleday & Company, New York
- Forstner U (1990) Inorganic sediment chemistry and elemental speciation. In: Baudo R, Giesey J, Muntau H (eds) Sediments: Chemistry and Toxicity of In-Place Pollutants, Lewis Publishers, Chelsea, Maryland pp 61-105
- Granier L, Ghevreuil M, Carru AM, Letolle R (1990) Urban runoff pollution by organochlorines (polychlorinated biphenyls and lindane) and heavy metals (lead and zinc) Chemosphere 21:1101-1107
- ISC (1988) Combined Sewer Outfalls in the Interstate Sanitation District, October. Interstate Sanitation Commission, New York, New York
- IT Corp (1986) Passaic River Sediment Study. Final Report. Prepared by International Technology Corporation, Pittsburgh, PA for the New Jersey Department of Environmental Protection, Trenton, NJ. March
- Meyers WS (1945) The story of New Jersey, Vols. 1-4. Lewis Historical Publishing Co, New York
- Meyerson AL, Luther GW, Krajewsk J, Hires RI (1981) Heavy metal distribution in Newark Bay sediments. Mar Poll Bull 12(7):244-250
- Mytelka AI, Czachor JS, Guggino WB, Golub H (1973) Heavy metals in wastewater and treatment plant effluents. J Water Pollut Contr Fed 45:1859-1864
- NOAA (1982) Contaminant inputs to the Hudson/Raritan estuary. NOAA Technical Memorandum OMPA-21 National Oceanic and Atmospheric Administration, Office of Marine Pollution Assessment, Boulder, CO
- NOAA (1991) The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration, Coastal and Estuarine Assessment Branch, Seattle, Washington
- PVSC (1970) Annual Report to Commissioners. Passaic Valley Sewerage Commissioners, Newark, New Jersey pp.12-13
- Suflita JM, Gerba CP, Ham RK, Palmisano AC, Rathje WL, Robinson JA (1992)
 The world's largest landfill: A multidisciplinary investigation. Environ Sci
 Technol 26(8):1486-1495
- USEPA (1992) Managing nonpoint source pollution, final report to Congress on Section 319 of the Clean Water Act (1989). US Environmental Protection

Agency EPA 506/9-90; January 1992, Washington, DC Whipple W, Hunter JW, Yu SL (1976) Characterization of urban runoff - New Jersey. Water Resources Research Institute, Rutgers University, New Brunswick, New Jersey

Received December 2, 1992; accepted April 22, 1993.